Сумма внешних углов выпуклого многоугольника. Доказательства

Сумма внешних углов любого выпуклого n-угольника равна 360 градусов. Первое доказательство. Вот наш n-угольник, в данном случае  n = 6. Вот его внешние углы, а вот внутренние углы. Сумма всех внешних и внутренних углов — это сумма n развёрнутых углов. Каждый внутренний угол плюс смежный с ним внешний угол — в сумме 180 градусов. Общая сумма внутренних и внешних равна n*180 градусов. Если вычесть из этой суммы сумму внутренних углов, то получится сумма внешних. А уже доказано, что сумма внутренних углов — на 360 градусов меньше, чем n*180. Значит, сумма внешних углов равна 360 градусов. ЧТД.

Второе доказательство. Чтобы путнику обойти вокруг выпуклого многоугольника — надо возле каждой вершины поворачивать на угол, равный внешнему углу при этой вершине. И при полном обходе сумма поворотов составит как раз 1 полный оборот, т.е. 360 градусов.

Поддержите нас!

Мы сделали Блицтест бесплатным и свободным от рекламы, потому что верим в доступное и качественное образование для детей. Чтобы сделать вклад в развитие детского образования ощутимее нам нужна ваша помощь. Если вы разделяете наши убеждения и хотите помочь, пожалуйста, расскажите о нас друзьям или сделайте добровольное пожертвование на развитие проекта. Спасибо!