Ромб и его свойства — доказательство

Ромб — это параллелограмм, у которого все стороны равны. Поэтому ему принадлежат пять свойств параллелограмма, а в дополнение у него ещё три свойства. И все они о диагоналях. Первые пять свойств ромба как параллелограмма: а) диагональ ромба делит его на два равных треугольника, б) противоположные стороны ромба равны, в) противоположные углы ромба равны, г) сумма углов, прилежащих к одной стороне, равна 180°.

Шестое-седьмое свойства: диагонали ромба взаимно перпендикулярны и делят углы ромба пополам. Чтобы это доказать — рассмотрим треугольник ABC. Этот треугольник равнобедренный, потому что у него стороны AB и BC равны. А отрезок BO в треугольнике ABC — является медианой (т.к. по пятому свойству параллелограмма отрезки AO и CO равны). А известно, что медиана при вершине равнобедренного треугольника является также высотой и биссектрисой. То есть диагонали ромба взаимно перпендикулярны, и делят углы ромба пополам (в треугольнике ABC — угол B разделён лучом BO на равные углы ABD и CBD, но можно рассмотреть и другие равнобедренные треугольники, например, треугольник BAD, и  доказать равенство углов BAC и DAC).

Восьмое свойство ромба: диагонали ромба являются его осями симметрии. Доказательство: рассмотрим ось AC и посмотрим, как расположены точки относительно этой диагонали. Точка A самой себе симметрична, точка C самой себе симметрична. А точка B — симметрична точке D, потому что эти точки лежат на одном перпендикуляре и равноудалены от прямой AC. Выходит, что диагональ AC является осью симметрии всего ромба. Точно так же мы можем доказать, что диагональ BD является осью симметрии всего ромба. ЧТД.

диагональ

прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне многоугольника

луч (полупрямая)

часть прямой, находящаяся в одной полуплоскости

медиана

отрезок, соединяющий вершину треугольника с серединой противоположной стороны

параллелограмм

четырёхугольник, у которого противоположные стороны попарно параллельны

перпендикулярные прямые

прямые, образующие при пересечении четыре прямых угла

равнобедренный треугольник

треугольник, у которого две стороны равны

ромб

параллелограмм, у которого все стороны равны

стороны

смежные отрезки, соединяющие вершины многоугольника

треугольник

фигура, состоящая из трёх точек, не лежащих на одной прямой и трёх отрезков, попарно соединяющих эти точки

угол

фигура, состоящая из точки и двух исходящих из неё лучей

Расскажите друзьям!

Блицтест — полностью некоммерческий проект. Мы не берем оплату за пользование сайтом и не размещаем рекламу. Нам важно, чтобы вы рассказали о нас друзьям. Поделитесь ссылкой на сайт blitztest.ru в соцсетях или мессенджерах. Пусть еще больше людей обучаются бесплатно.