Теорема о соотношении между сторонами треугольника. Доказательство

Во всяком треугольнике любая сторона меньше суммы двух других. Вот наш треугольник ABC. Утверждение теоремы состоит в том, что даже самая длинная его сторона AC — всё равно короче, чем сумма двух других сторон AB и BC. Для доказательства этого утверждения проведём высоту из вершины большего угла B. В каждом полученном прямоугольном треугольнике гипотенуза больше катета, и две гипотенузы в сумме больше большой стороны. Каждая из маленьких сторон (то есть AB или BC) — меньше, чем AC, и понятное дело, меньше суммы двух других сторон. ЧТД.

вершина

точка, из которой выходят два луча, образующих угол

высота треугольника

перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на её продолжение

гипотенуза

сторона прямоугольного треугольника, лежащая против прямого угла

катет

одна из двух сторон прямоугольного треугольника, образующих прямой угол

прямоугольный треугольник

треугольник, в котором один угол прямой

треугольник

фигура, состоящая из трёх точек, не лежащих на одной прямой и трёх отрезков, попарно соединяющих эти точки

угол

фигура, состоящая из точки и двух исходящих из неё лучей

Расскажите друзьям!

Блицтест — полностью некоммерческий проект. Мы не берем оплату за пользование сайтом и не размещаем рекламу. Нам важно, чтобы вы рассказали о нас друзьям. Поделитесь ссылкой на сайт blitztest.ru в соцсетях или мессенджерах. Пусть еще больше людей обучаются бесплатно.