Средняя линия треугольника и её свойство — доказательство

Средняя линия треугольника и её свойства. Определение: средняя линия треугольника — это отрезок, соединяющий середины двух его сторон. У средней линии есть два свойства : первое свойство: средняя линия треугольника параллельна основанию и второе свойство: средняя линия равна половине основания. Доказательство. Через середину E боковой стороны BC проведём прямую ED параллельно основанию AC. По теореме Фалеса другая боковая сторона тоже разделится пополам. Значит, D — середина стороны AB, то есть отрезок ED — это средняя линия. А по построению наш отрезок параллелен основанию, вот и доказана параллельность средней линии основанию. Теперь докажем второе свойство: через точку D проведём прямую DF, параллельную боковой стороне BC. По теореме Фалеса основание AC разделится пополам, то есть точка F — середина стороны AC, и FC равно половине основания. А многоугольник CEDF — это параллелограмм (по построению), его противоположные стороны равны, то есть отрезок DE равен половинке основания — отрезку FC. То есть средняя линия равна половине основания. ЧТД.

Поддержите нас!

Мы сделали Блицтест бесплатным и свободным от рекламы, потому что верим в доступное и качественное образование для детей. Чтобы сделать вклад в развитие детского образования ощутимее нам нужна ваша помощь. Если вы разделяете наши убеждения и хотите помочь, пожалуйста, расскажите о нас друзьям или сделайте добровольное пожертвование на развитие проекта. Спасибо!