Средняя линия треугольника и её свойство - доказательство.

Средняя линия треугольника и её свойства. Определение: средняя линия треугольника — это отрезок, соединяющий середины двух его сторон. У средней линии есть два свойства : первое свойство: средняя линия треугольника параллельна основанию и второе свойство: средняя линия равна половине основания. Доказательство. Через середину E боковой стороны BC проведём прямую ED параллельно основанию AC. По теореме Фалеса другая боковая сторона тоже разделится пополам. Значит, D - середина стороны AB, то есть отрезок ED - это средняя линия. А по построению наш отрезок параллелен основанию, вот и доказана параллельность средней линии основанию. Теперь докажем второе свойство: через точку D проведём прямую DF, параллельную боковой стороне BC. По теореме Фалеса основание AC разделится пополам, то есть точка F - середина стороны AC, и FC равно половине основания. А многоугольник CEDF - это параллелограмм (по построению), его противоположные стороны равны, то есть отрезок DE равен половинке основания - отрезку FC. То есть средняя линия равна половине основания. ЧТД.

Уроки курса